

Writing an adaptive Stack
in JavaScript or Rust

Using a language neutral API via WASI 0.2

Christof Petig 15th AUTOSAR Open Conference

11 Jun 2024 Hilton Tokyo Odaiba

Overview of this talk

► Motivation: Rust Applications for Adaptive Platform

► Solution: Language Neutral Binary Interface

► Practical: Running an AP Application in a Browser

► Practical: With a Rust Stack and deploy for Embedded

► Outlook: Future Optimizations

11 Jun 2024Writing an adaptive Stack in JavaScript or Rust
2 of

30

C++ Application

AUTOSAR Adaptive Platform Stack

The classical situation for C++ Applications

11 Jun 2024Writing an adaptive Stack in JavaScript or Rust
3 of

30

ara stack

com

POSIX51

exec log per

proxy &

skeleton

…core

standardized C++ API

ara stack

com

POSIX51

exec log per

proxy & skeleton

…core

standardized C++ API

C++ Application

AUTOSAR Adaptive Platform Stack

But how to write a Rust Application?

11 Jun 2024Writing an adaptive Stack in JavaScript or Rust
4 of

30

???

Rust is a new Language Focussing on Correctness

Combining C++ with other languages

• No Standardized Binary Interface for neither C++ nor Rust

• There is a Standardized Binary Interface (ABI) for C

• Solution: Define a C Interface

…

11 Jun 2024Writing an adaptive Stack in JavaScript or Rust
5 of

30

ara stack

com

POSIX51

exec log per

proxy & skeleton

…core

standardized C++ API

C API & ABI

Rust Application

C++ Application

AUTOSAR Adaptive Platform Stack

A C Interface Provides a Defined In-memory Representation

11 Jun 2024Writing an adaptive Stack in JavaScript or Rust
6 of

30

Rust Application

C++ Application

AUTOSAR Adaptive Platform Stack

Impedance matching with C++

11 Jun 2024Writing an adaptive Stack in JavaScript or Rust
7 of

30

ara stack

com

POSIX51

exec log per

proxy & skeleton

…core

standardized C++ API

proxy & skeleton core, exec, log, per, … adapter

C API & ABI

proxy & skeleton core, exec, log, per, … adapter

Rust Application

C++ Application

AUTOSAR Adaptive Platform Stack

Nicer Rust API. This Solution is quite Complex

11 Jun 2024Writing an adaptive Stack in JavaScript or Rust
8 of

30

ara stack

com

POSIX51

exec log per

proxy & skeleton

…core

standardized C++ API

C API & ABI

proxy & skeleton core, exec, log, per, … adapter

Rust API

Combining C++ with other Languages

• No Standardized Binary Interface for neither C++ nor Rust

• There is a Standardized Binary Interface (ABI) for C

• Solution: Define a C Interface

• Mapping ara::core::Result<std::vector<T>> to a C type is tedious

• Responsibility to free memory needs manual checking

More Practical problems of this approach

11 Jun 2024Writing an adaptive Stack in JavaScript or Rust
9 of

30

Rust Application

AUTOSAR Adaptive Platform Stack

And even more Complex for a Rust Stack

11 Jun 2024Writing an adaptive Stack in JavaScript or Rust
10 of

30

POSIX51

standardized C++ API

proxy & skeleton core, exec, log, per, … adapter

C API & ABI

proxy & skeleton core, exec, log, per, … adapter

Rust API

proxy & skeleton core, exec, log, per, … adapter

C API & ABI

Rust stack

C++ Application

Part 2: Solution

► Motivation: Rust Applications for Adaptive Platform

► Solution: Language Neutral Binary Interface

► Practical: Running an AP Application in a browser

► Practical: With a Rust Stack and deploy for Embedded

► Outlook: Future Optimizations

11 Jun 2024Writing an adaptive Stack in JavaScript or Rust
11 of

30

Solution: WebAssembly

• WebAssembly was Created to run C, C++ and more in the Browser

• 2018: Standardized by WorldWideWebConsortium (W3C)

• WebAssembly Abstracts the CPU

• Translation to Native Code while Loading

A Language Neutral high-level Interface

11 Jun 2024Writing an adaptive Stack in JavaScript or Rust
12 of

30

Solution: WebAssembly

• WebAssembly was Created to run C, C++ and more in the Browser

• 2018: Standardized by WorldWideWebConsortium (W3C)

• WebAssembly Abstracts the CPU

• Translation to Native Code while Loading

• 2019: WebAssembly Systems Interface (System Calls) was added

• 2024: WASI 0.2; more modular, polyglot components

A Language Neutral high-level Interface

11 Jun 2024Writing an adaptive Stack in JavaScript or Rust
13 of

30

Solution: WebAssembly Interface Types

• Directly Compatible with a lot of Languages

• Supports Object Methods, Result and Optional

• Will soon support Future and Stream

• Composable Elements

• Direct Function Calls, no JSON Encoding/Decoding

• Shared Nothing

• Enables full Insulation, Instrumentation and Network Transparency

A Language Neutral high-level Interface

11 Jun 2024Writing an adaptive Stack in JavaScript or Rust
14 of

30

Rust Application

AUTOSAR Adaptive Platform Stack

A better Solution for a Rust Stack, but what about C++?

11 Jun 2024Writing an adaptive Stack in JavaScript or Rust
15 of

30

POSIX51

standardized

C++ API

C
+

+
 A

p
p
lic

a
ti
o
n

WIT ABI

p&s core, exec, log, per, … adapter

Rust API

Rust stack

C++ Application

?

C++ Application

R
u

s
t

A
p
pRust Application

WIT ABI

AUTOSAR Adaptive Platform Stack

Adding a symmetric solution for C++

11 Jun 2024Writing an adaptive Stack in JavaScript or Rust
16 of

30

POSIX51

standardized C++ API

p&s core, exec, log, per, … adapter p&s core, exec, log, per, … adapter

Rust API

Rust stack

Part 3: Practical

► Motivation: Rust Applications for Adaptive Platform

► Solution: Language neutral binary Interface

► Practical: Running an AP Application in a browser

► Practical: With a Rust Stack and deploy for Embedded

► Outlook: Future Optimizations

11 Jun 2024Writing an adaptive Stack in JavaScript or Rust
17 of

30

C++ Adaptive Application

WIT ABI

Practical

Compiling the C++ Application to WebAssembly and running it in a browser

11 Jun 2024Writing an adaptive Stack in JavaScript or Rust
18 of

30

standardized C++ API

p&s core, exec, log, per, … adapter

Java Script

Browser

WASI

JavaScript example

Radar example compiled to WebAssembly

11 Jun 2024Writing an adaptive Stack in JavaScript or Rust
19 of

30

Examplary WIT interface

interface core {
use types.{error-code};
resource instance-specifier {

to-string: func() -> string;
clone: func() -> instance-specifier;
create: static func(spec: string)

-> result<instance-specifier, error-code>;
}

initialize: func() -> result<_, error-code>;
deinitialize: func() -> result<_, error-code>;

}

ara::core::

11 Jun 2024Writing an adaptive Stack in JavaScript or Rust
20 of

30

Part 3: Practical

► Motivation: Rust Applications for Adaptive Platform

► Solution: Language neutral binary Interface

► Practical: Running an AP Application in a browser

► Practical: With a Rust Stack and deploy for Embedded

► Outlook: Future Optimizations

11 Jun 2024Writing an adaptive Stack in JavaScript or Rust
21 of

30

Rust example

Targeting a WebAssembly Runtime

11 Jun 2024Writing an adaptive Stack in JavaScript or Rust
22 of

30

Runtime (like RTE)

C++ Radar C++ FusionRust stack

Easy graphical composition

(https://wasmbuilder.app/ isn’t complete yet)

11 Jun 2024Writing an adaptive Stack in JavaScript or Rust
23 of

30

Zooming in

AUTOSAR adaptive (ara) as well as Operating system (wasi) APIs, versioned

11 Jun 2024Writing an adaptive Stack in JavaScript or Rust
24 of

30

Rust example

Three Exchangeable Options for Porting to an Embedded Platform

11 Jun 2024Writing an adaptive Stack in JavaScript or Rust
25 of

30

3. Wasm2c +

Target Compiler

2. Target

Compiler

Runtime connection

C++ Radar C++ FusionRust stack

1. WebAssembly

Micro Runtime

Part 4: Outlook

► Motivation: Rust Applications for Adaptive Platform

► Solution: Language neutral binary Interface

► Practical: Running an AP Application in a browser

► Practical: With a Rust Stack and deploy for Embedded

► Outlook: The Future of WASI

11 Jun 2024Writing an adaptive Stack in JavaScript or Rust
26 of

30

Current Limits of this technology

Still being worked on

• C++ code generation

• Multiple Threads

• C++ Exceptions

• Asynchronous calls

• SOME/IP

• Qualified execution

11 Jun 2024Writing an adaptive Stack in JavaScript or Rust
27 of

30

Opportunities

• Containers for microcontrollers

• CPU and OS independent

• Full Insulation and Deterministic Timing

• Running AUTOSAR Applications on Custom Middleware

• W3C Standardization of Technology

• Running inside VScode

11 Jun 2024Writing an adaptive Stack in JavaScript or Rust
28 of

30

Future options

• Bytecodealliance SIG embedded

• Work towards efficiency and small size

• Industrial Interests Represented

• WASI 0.3

• Futures and Streams

• Independent choice of asynchronous and blocking for each block

11 Jun 2024Writing an adaptive Stack in JavaScript or Rust
29 of

30

Thank you!

	Title
	Slide 1: Writing an adaptive Stack in JavaScript or Rust

	Content
	Slide 2: Overview of this talk
	Slide 3: AUTOSAR Adaptive Platform Stack
	Slide 4: AUTOSAR Adaptive Platform Stack
	Slide 5: Combining C++ with other languages
	Slide 6: AUTOSAR Adaptive Platform Stack
	Slide 7: AUTOSAR Adaptive Platform Stack
	Slide 8: AUTOSAR Adaptive Platform Stack
	Slide 9: Combining C++ with other Languages
	Slide 10: AUTOSAR Adaptive Platform Stack

	Part 2: Solution
	Slide 11: Part 2: Solution
	Slide 12: Solution: WebAssembly
	Slide 13: Solution: WebAssembly
	Slide 14: Solution: WebAssembly Interface Types
	Slide 15: AUTOSAR Adaptive Platform Stack
	Slide 16: AUTOSAR Adaptive Platform Stack

	Part 3a: JavaScript
	Slide 17: Part 3: Practical
	Slide 18: Practical
	Slide 19: JavaScript example
	Slide 20: Examplary WIT interface

	Part 3b: Rust
	Slide 21: Part 3: Practical
	Slide 22: Rust example
	Slide 23: Easy graphical composition
	Slide 24: Zooming in
	Slide 25: Rust example

	Part 4: Outlook
	Slide 26: Part 4: Outlook
	Slide 27: Current Limits of this technology
	Slide 28: Opportunities
	Slide 29: Future options

	Closing
	Slide 30: Thank you!

