
  

  

Writing an adaptive Stack
in JavaScript or Rust

Using a language neutral API via WASI 0.2

Christof Petig 15th AUTOSAR Open Conference

11 Jun 2024 Hilton Tokyo Odaiba



  

Overview of this talk

► Motivation: Rust Applications for Adaptive Platform

► Solution: Language Neutral Binary Interface

► Practical: Running an AP Application in a Browser

► Practical: With a Rust Stack and deploy for Embedded

► Outlook: Future Optimizations
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C++ Application

AUTOSAR Adaptive Platform Stack

The classical situation for C++ Applications
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ara stack
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proxy & skeleton

…core

standardized C++ API

C++ Application

AUTOSAR Adaptive Platform Stack

But how to write a Rust Application?
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???

Rust is a new Language Focussing on Correctness



  

Combining C++ with other languages

• No Standardized Binary Interface for neither C++ nor Rust

• There is a Standardized Binary Interface (ABI) for C

• Solution: Define a C Interface

…
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C API & ABI

Rust Application

C++ Application

AUTOSAR Adaptive Platform Stack

A C Interface Provides a Defined In-memory Representation
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Rust Application

C++ Application

AUTOSAR Adaptive Platform Stack

Impedance matching with C++
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proxy & skeleton core, exec, log, per, … adapter

Rust Application

C++ Application

AUTOSAR Adaptive Platform Stack

Nicer Rust API.   This Solution is quite Complex
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Combining C++ with other Languages

• No Standardized Binary Interface for neither C++ nor Rust

• There is a Standardized Binary Interface (ABI) for C

• Solution: Define a C Interface

• Mapping ara::core::Result<std::vector<T>> to a C type is tedious

• Responsibility to free memory needs manual checking

More Practical problems of this approach
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Rust Application

AUTOSAR Adaptive Platform Stack

And even more Complex for a Rust Stack
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Part 2: Solution

► Motivation: Rust Applications for Adaptive Platform

► Solution: Language Neutral Binary Interface

► Practical: Running an AP Application in a browser

► Practical: With a Rust Stack and deploy for Embedded

► Outlook: Future Optimizations
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Solution: WebAssembly

• WebAssembly was Created to run C, C++ and more in the Browser

• 2018: Standardized by WorldWideWebConsortium (W3C)

• WebAssembly Abstracts the CPU

• Translation to Native Code while Loading

A Language Neutral high-level Interface
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Solution: WebAssembly

• WebAssembly was Created to run C, C++ and more in the Browser

• 2018: Standardized by WorldWideWebConsortium (W3C)

• WebAssembly Abstracts the CPU

• Translation to Native Code while Loading

• 2019: WebAssembly Systems Interface (System Calls) was added

• 2024: WASI 0.2; more modular, polyglot components

A Language Neutral high-level Interface
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Solution: WebAssembly Interface Types

• Directly Compatible with a lot of Languages

• Supports Object Methods, Result and Optional

• Will soon support Future and Stream

• Composable Elements

• Direct Function Calls, no JSON Encoding/Decoding

• Shared Nothing

• Enables full Insulation, Instrumentation and Network Transparency

A Language Neutral high-level Interface
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Rust Application

AUTOSAR Adaptive Platform Stack

A better Solution for a Rust Stack, but what about C++?
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C++ Application
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WIT ABI

AUTOSAR Adaptive Platform Stack

Adding a symmetric solution for C++
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Part 3: Practical

► Motivation: Rust Applications for Adaptive Platform

► Solution: Language neutral binary Interface

► Practical: Running an AP Application in a browser

► Practical: With a Rust Stack and deploy for Embedded

► Outlook: Future Optimizations
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C++ Adaptive Application

WIT ABI

Practical

Compiling the C++ Application to WebAssembly and running it in a browser
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JavaScript example

Radar example compiled to WebAssembly
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Examplary WIT interface

interface core {
use types.{error-code};
resource instance-specifier {

to-string: func() -> string;
clone: func() -> instance-specifier;
create: static func(spec: string) 

-> result<instance-specifier, error-code>;
}

initialize: func() -> result<_, error-code>;
deinitialize: func() -> result<_, error-code>;

}

ara::core::
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Part 3: Practical

► Motivation: Rust Applications for Adaptive Platform

► Solution: Language neutral binary Interface

► Practical: Running an AP Application in a browser

► Practical: With a Rust Stack and deploy for Embedded

► Outlook: Future Optimizations
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Rust example

Targeting a WebAssembly Runtime
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Runtime (like RTE)

C++ Radar C++ FusionRust stack



  

Easy graphical composition

(https://wasmbuilder.app/ isn’t complete yet)
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Zooming in

AUTOSAR adaptive (ara) as well as Operating system (wasi) APIs, versioned
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Rust example

Three Exchangeable Options for Porting to an Embedded Platform

11 Jun 2024Writing an adaptive Stack in JavaScript or Rust
25 of 

30

3. Wasm2c +

Target Compiler

2. Target

Compiler

Runtime connection

C++ Radar C++ FusionRust stack

1. WebAssembly

Micro Runtime



  

Part 4: Outlook

► Motivation: Rust Applications for Adaptive Platform

► Solution: Language neutral binary Interface

► Practical: Running an AP Application in a browser

► Practical: With a Rust Stack and deploy for Embedded

► Outlook: The Future of WASI
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Current Limits of this technology

Still being worked on

• C++ code generation

• Multiple Threads

• C++ Exceptions

• Asynchronous calls

• SOME/IP

• Qualified execution
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Opportunities

• Containers for microcontrollers

• CPU and OS independent

• Full Insulation and Deterministic Timing

• Running AUTOSAR Applications on Custom Middleware

• W3C Standardization of Technology

• Running inside VScode
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Future options

• Bytecodealliance SIG embedded

• Work towards efficiency and small size

• Industrial Interests Represented

• WASI 0.3

• Futures and Streams

• Independent choice of asynchronous and blocking for each block
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Thank you!
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